Humidified High Flow Therapy

Humidified High Flow therapy delivers respiratory support to your spontaneously breathing patients, by providing heated, humidified air and oxygen at flow rates of up to 60 L/min through unique interfaces.

Read on to discover more about:

- Clinical outcomes
- Physiological effects
- Mechanisms
- Usage

Humidified High Flow may reduce escalation and improve outcomes in patients with COPD,¹⁻⁴ bronchiectasis,⁴ mucositis,⁵ and tracheostomies.^{6,7}

SECRETION MANAGEMENT

Humidified High Flow may improve mucociliary clearance[®]

What are the effects of impaired mucociliary clearance?

obstruction infections

Who has impaired mucociliary clearance?

coughs

COPD ⁹	Tracheostomy ⁷		
Bronchiectasis ⁹	Mucositis ¹⁰		
Cystic fibrosis ⁹	Primary/secondary		
Asthma [°]	ciliary dyskinesia [°]		

CLINICAL OUTCOMES WITH HUMIDIFIED HIGH FLOW	REDUCED escalation	IMPROVED quality of life	REDUCED hypercapnia	IMPROVED oxygenation
STORGAARD et al. 2018' Hypoxemic COPD on LTOT	REDUCED exacerbations		REDUCED CO ₂	
NAGATA et al. 2018 ² Hypercapnic COPD on LTOT				
BRÄUNLICH et al. 2019 ³ Hypercapnic COPD on LTOT				
REA et al. 2010⁴ COPD and/or bronchiectasis	REDUCED exacerbations days			
MACANN et al. 2013 ⁵ Adult mucositis	REDUCED hospitalization days			
DOLIDON et al. 2019 ⁶ Adult hypoxemic/ tracheostomy patients	REDUCED tracheostomy exacerbations			
MCNAMARA et al. 2014 ⁷ Pediatric tracheostomy patients	REDUCED adverse events tracheostomy	IMPROVED comfort		
AMADDEO et al. 2019 " OSA pediatric with CPAP intolerance	REDUCED AHI			
HAWKINS et al. 2017 ¹² OSA pediatric with CPAP intolerance	REDUCED AHI			

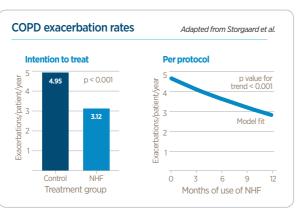
PUBLICATION SUMMARIES

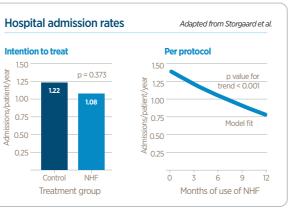
Evidence suggests that **humidified Nasal High Flow (NHF) improves patient outcomes** in chronic care.^{12,4}

Storgaard et al. 2018

International Journal of Chronic Obstructive Pulmonary Disease

STUDY


A prospective, randomized, controlled trial in COPD patients with chronic hypoxemic respiratory failure comparing NHF plus long term oxygen therapy (LTOT) with LTOT only (control).


METHOD

200 patients were randomized to receive either NHF plus LTOT or LTOT only for 12 months. Patients were instructed to use NHF for at least 8 hours per day, preferably at night, at a flow rate of 20 L/min.

RESULTS

- NHF significantly reduced exacerbation rates 4.95 (control) vs 3.12 (NHF)
- Hospital admission rates reduced with increasing duration of NHF use (modelled fit)
- NHF significantly improved SGRQ, CO₂ retention, 6MWT, dyspnea compared to control
- There was no significant difference in terms of all-cause mortality between the two groups

Nagata et al. 2018 Annals of the American Thoracic Society

STUDY

A prospective, randomized, cross-over trial in stable hypercapnic COPD patients comparing NHF plus LTOT with LTOT only (control).

METHOD

30 patients were randomized to receive either NHF plus LTOT or LTOT only for 6 weeks, then crossed over to the alternative treatment. Patients were instructed to use NHF for at least 4 hours per night during sleep at flow rates of 30-40 L/min.

SGRQ-C

SGRQ-C	ADJUSTED TREATMENT EFFECT (95% CI)	P VALUE
Total score*	-7.8 (-11.9, -3.7)	< 0.01
Symptom score	-10.8 (-15.3, -6.3)	< 0.01
Activity score	-4.7 (-8.7, -0.6)	0.03
Impact score	-8.7 (-15, -2.5)	0.01

Adapted from Nagata et al.

RESULTS

- NHF significantly improved the total SGRQ-C score compared to control by 7.8 points
- NHF significantly reduced CO₂ retention compared to control
- SpO₂, dyspnea, pulmonary function tests, 6MWT, EQ-5D-5L and physical activity did not differ significantly between treatment groups
- NHF was well tolerated with no related severe adverse events

Arterial blood gas and nocturnal PtcCO₂

	ADJUSTED TREATMENT EFFECT (95% CI)	P VALUE		
Arterial blood gas				
рН	0.02 (0.01, 0.02)	0.01		
PaCO ₂ (mmHg)	-4.1 (-6.5, -1.7)	< 0.01		
Nocturnal PtcCO ₂ (mmHg)				
Median	-5.1 (-8.4, -1.8)	< 0.01		

Adapted from Nagata et al.

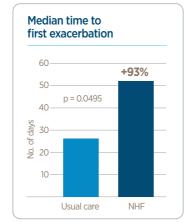
PUBLICATION SUMMARIES

Evidence suggests that **humidified Nasal High Flow (NHF) improves patient outcomes** in chronic care.^{12,4}

Rea et al. 2010 Respiratory Medicine

STUDY


A comparison of long-term humidification therapy using nasal high flow (NHF) with usual care in COPD and bronchiectatic patients. The primary outcome was the rate of exacerbations per patient over a 12-month period.


METHOD

108 patients were randomized to usual care (n=48) or NHF therapy (n=60) at a flow rate of 20-25 L/min for \geq 2 hours per day.

RESULTS

- Exacerbation frequency was 3.63 (Usual care) vs 2.97 (NHF) per patient per year, but was not statistically significant (p=0.067)
- NHF significantly reduced the number of exacerbation days over a 12-month period from 33.5 to 18.2 days (p=0.045)
- Median time to first exacerbation was significantly longer on NHF:
 27 to 52 days (p=0.0495)
- NHF significantly reduced antibiotic use from 38.5% to 22.8% of patients (p=0.008). All other medication use was similar.
- > The mean use time was **1.6 hours** per day

Adapted from Rea et al.

PHYSIOLOGICAL EFFECTS

The mechanisms of airway hydration, respiratory support, patient comfort and supplemental oxygen contribute to distinct physiological effects.^{8,13-18}

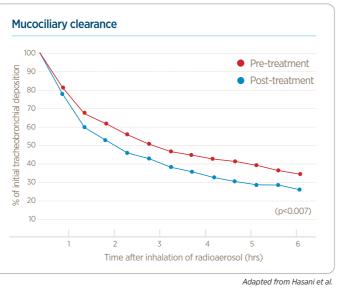
	IMPROVED mucociliary clearance	REDUCED work of breathing	REDUCED respiratory rate	REDUCED carbon dioxide
HASANI et al. 2008 [®] Bronchiectasis				
PISANI et al. 2017 ¹³ COPD, NHF vs. standard oxygen and NIV				
BISELLI et al. 2016 ¹⁴ COPD and healthy, NHF /s. low flow oxygen				
FRASER et al. 2016 [™] COPD, NHF vs. low flow oxygen				
BRÄUNLICH et al. 2016 [™] COPD, NHF vs. CPAP and BiPAP				
MCKINSTRY et al. 2018 ¹⁷ COPD, NHF vs. room air				
MCKINSTRY et al. 2019 ¹⁸ COPD, NHF vs. NIV				•

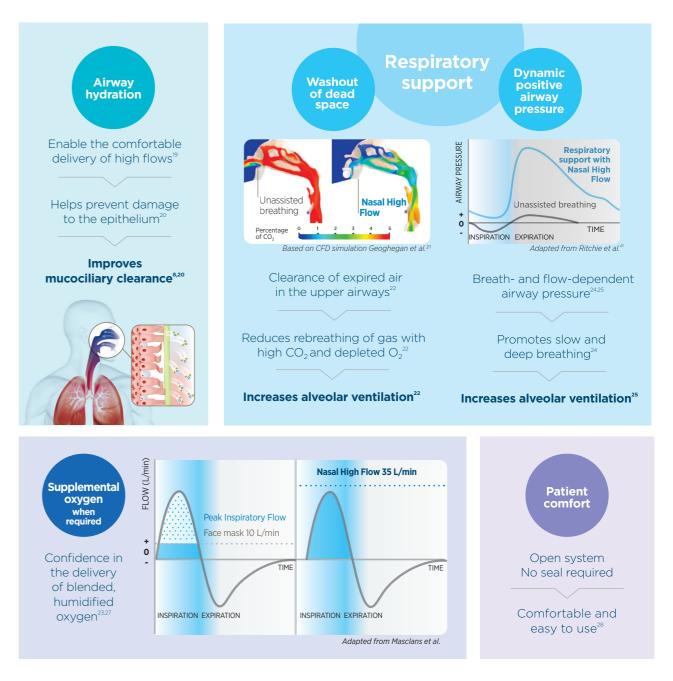
PUBLICATION SUMMARY

Evidence suggests that **humidified Nasal High Flow (NHF) improves mucociliary clearance.**⁸

Hasani et al. 2008 Chronic Respiratory Disease

STUDY


An examination of the impact of humidification on mucociliary clearance in bronchiectatic adult patients within their homes.


METHOD

10 patients with bronchiectasis were delivered warmed, humidified air at a flow of 20–25 L/min through nasal cannula for 7 days, 3 hours per day.

RESULTS

- Following humidification, mucociliary clearance significantly improved (p<0.007)
- There were no significant differences in lung function tests between pre- and post-treatment

USAGE

There is an ever-increasing body of clinical literature which may provide guidance on the day-to-day application of humidified NHF.^{1-4,6}

What patient groups has the device been used on?		What therapy durations were used?	What flow rates and I supplemental oxygen		What is the approximate average dynamic pressure generated?	
Publication	Patient group	Daily use	Flow rate	O2 Supplemental oxygen	Average pressure increases approximate 0.5-1 cmH ₂ O per 10 L/min. ²³⁻²⁵	
TORGAARD et al. 2018'	Hypoxemic COPD on LTOT with NHF	6 hours/day during day or night	20L/min	1.7L/min	Average airway pressure	
AGATA et al. 2018 ²	Hypercapnic COPD on LTOT with NHF	>7 hours/day during night	30L/min	1.2-1.4L/min	(O ² Huu) e	
ÄUNLICH et al. 2019 ³	Hypercapnic COPD on LTOT with NHF	>5 hours/day	20L/min	2L/min	Pressure range	
et al. 2010⁴	COPD and/or bronchiectasis with NHF	>1.6 hours/day during day	20-25L/min	Not applicable	1 10 20 30 40 50 Flow (L/min)	
IDON et al. 2019 ⁶	Hypoxemic respiratory failure with NHF	Not reported	25L/min	12.9L/min	Pressure ranges are cannula and patient dependent. For illustrative purposes only.	
LIDON et al. 2019 ⁶	Tracheotomized patients treated with THF	Not reported	32L/min	2.3L/min		

REFERENCES

- Storgaard L, Hockey H, Laursen B, et al. Long-term effects of oxygenenriched high-flow nasal cannula treatment in COPD patients with chronic hypoxemic respiratory failure. Int J Chron Obstruct Pulmon Dis. 2018;13:1195-1205.
- Nagata K, Kikuchi T, Horie T, et al. Domiciliary High-Flow Nasal Cannula Oxygen Therapy for Patients with Stable Hypercapnic Chronic Obstructive Pulmonary Disease. A Multicenter Randomized Crossover Trial. Ann Am Thorac Soc. 2018;15(4):432-439.
- Bräunlich J, Dellweg D, Bastian A, et al. Nasal high-flow versus noninvasive ventilation in patients with chronic hypercapnic COPD. Int J Chron Obstruct Pulmon Dis 2019 Jul 5;14:1411-1421.
- Rea H, McAuley S, Jayaram L, et al. The clinical utility of long-term humidification therapy in chronic airway disease. Respir Med 2010;104(4):525-533.
- Macann A, Fua T, Milross CG, et al. Phase 3 trial of domiciliary humidification to mitigate acute mucosal toxicity during radiation therapy for head-andneck cancer: first report of Trans Tasman Radiation Oncology Group (TROG) 0.7.03 RadioHUM study.
 In J Radiat Oncol Biol Phys 2014;88(3):572-9.
- Dolidon S, Dupuis J, Molano Valencia LC, et al. Characteristics and outcome of patients set up on high-flow oxygen therapy at home. Ther Adv Respir Dis 2019;13:1753466619879794.
- McNamara DG, Innes Asher M, Rubin BK, et al. Heated humidification improves clinical outcomes compared to a heat and moisture exchanger in children with tracheostomies. Respir Care 2014;59(1):46-53.
- Hasani A, Chapman TH, McCool D, et al. Domiciliary humidification improves lung mucociliary clearance in patients with bronchiectasis. Chron Respir Dis 2008;5(2):81-6.
- Munkholm M and Mortensen J. Mucociliary clearance: patho-physiological aspects. Clin Physiol Funct Imaging 2014;34:171-177.
- Gupta SC, Chandra S and Singh M. Effects of irradiation on nasal mucociliary clearance in head and neck cancer patients. Indian J Otolaryngol Head Neck Surg 2006;58 (1):46-50.
- Amaddeo A, Khirani S, Frapin A, et al. High-flow nasal cannula for children not compliant with continuous positive airway pressure. Sleep Med 2019;63:24-8.
- Hawkins S, Huston S, Campbell K, et al. High-Flow, Heated, Humidified Air Via Nasal Cannula Treats CPAP-Intolerant Children With Obstructive Sleep Apnea. J Clin Sleep Med 2017;13(8):981-9.
- Pisani L, Fasano L, Corcione N, et al. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD. Thorax 2017;72(4):373-5.

- Biselli PC, Kirkness JP, Grote L, et al. Nasal high flow therapy reduces work of breathing compared to oxygen during sleep in COPD and smoking controls – prospective observational study. J Appl Physiol 2016;122(1):82-88.
- Fraser JF, Spooner AJ, Dunster KR, et al. Nasal high flow oxygen therapy in patients with COPD reduces respiratory rate and tissue carbon dioxide while increasing tidal and end-expiratory lung volume: a randomised crossover trial. Thorax 2016;71(8):759-61.
- Bräunlich J, Köhler M and Wirtz H. Nasal highflow improves ventilation in patients with COPD. Int J COPD 2016;11:1077-85.
- McKinstry S, Pilcher J, Bardsley G, et al. Nasal high flow therapy and PtCO2 in stable COPD: A randomized controlled cross-over trial. Respirology 2018;23(4):378-84.
- McKinstry S, Singer J, Baarsma JP, et al. Nasal high-flow therapy compared with non-invasive ventilation in COPD patients with chronic respiratory failure: A randomized controlled cross-over trial. Respirology 2019;24(11):1081-7.
- Roca O, Riera J, Torres F, et al. High-flow oxygen therapy in acute respiratory failure. Respir Care 2010; 55(4):408-13.
- Williams R, Rankin N, Smith T, et al. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit Care Med 1996;24 (11):1920-9.
- 21. Geoghegan PH, Buchmann NA, Spence CJT et al. Fabrication of rigid and flexible refractive-index matched flow phantoms for flow visualisation and optical flow measurements. Exp Fluids 2012;52(5):1331-47.
- Möller W, Celik G, Feng S, et al. Nasal high flow clears anatomical deadspace in upper airway models. J Appl Physiol 2015;118(12):1525-32.
- Ritchie JE, Williams AB, Gerard C. Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures. Anaesth Intensive Care 2011;39(6):1103-10.
- Mündel T, Feng S, Tatkov S, et al. Mechanisms of nasal high flow on ventilation during wakefulness and sleep. J Appl Physiol 2013. 114(8): 1058-1065.
- Parke R, McGuinness S, Eccleston M. The effects of flow on airway pressure during nasal high-flow oxygen therapy. Respir Care (Aug) 2011; 56(8):1151-5.
- Parke R, McGuiness S and Eccleston M. A preliminary randomized controlled trial to assess effectiveness of nasal high-flow oxygen in intensive care patients. Respir Care 2011; 56(3):265-270.
- 27. Masclans J, Roca O. High-flow oxygen therapy in acute respiratory failure. Clin Pulm Med 2012;19:127-130.
- 28. Fisher & Paykel Healthcare Internal Test Report TR-25174.

www.fphcare.com